Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Can you each work out the number on your card? What do you notice? How could you sort the cards?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Can you fit the tangram pieces into the outline of this plaque design?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

These practical challenges are all about making a 'tray' and covering it with paper.

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Exploring and predicting folding, cutting and punching holes and making spirals.

Make a cube out of straws and have a go at this practical challenge.

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Use the tangram pieces to make our pictures, or to design some of your own!

How many models can you find which obey these rules?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

An activity making various patterns with 2 x 1 rectangular tiles.

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?