Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you use the interactive to complete the tangrams in the shape of butterflies?

Make a flower design using the same shape made out of different sizes of paper.

Can you fit the tangram pieces into the outline of this sports car?

What is the greatest number of squares you can make by overlapping three squares?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of the rocket?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of Little Ming?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you logically construct these silhouettes using the tangram pieces?

Exploring and predicting folding, cutting and punching holes and making spirals.

Make a cube out of straws and have a go at this practical challenge.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you visualise what shape this piece of paper will make when it is folded?

Reasoning about the number of matches needed to build squares that share their sides.

Can you fit the tangram pieces into the outlines of these clocks?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

You have been given three shapes made out of sponge: a sphere, a cylinder and a cone. Your challenge is to find out how to cut them to make different shapes for printing.

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

The challenge for you is to make a string of six (or more!) graded cubes.

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of these rabbits?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Did you know mazes tell stories? Find out more about mazes and make one of your own.