Numbers arranged in a square but some exceptional spatial awareness probably needed.

How will you decide which way of flipping over and/or turning the grid will give you the highest total?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

A challenging activity focusing on finding all possible ways of stacking rods.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

An activity making various patterns with 2 x 1 rectangular tiles.

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

This article for teachers suggests ideas for activities built around 10 and 2010.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

In how many ways can you stack these rods, following the rules?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

How many models can you find which obey these rules?

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

A description of some experiments in which you can make discoveries about triangles.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

This challenge extends the Plants investigation so now four or more children are involved.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Complete these two jigsaws then put one on top of the other. What happens when you add the 'touching' numbers? What happens when you change the position of the jigsaws?

Can you find ways of joining cubes together so that 28 faces are visible?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Investigate the numbers that come up on a die as you roll it in the direction of north, south, east and west, without going over the path it's already made.

What do these two triangles have in common? How are they related?