Trailing zeros

How many zeros does 50! have at the end?

Problem

The symbol $50!$ represents the product of all the whole numbers from $1$ to $50$ inclusive; that is, $50!=1 \times 2 \times 3 \times \dots \times 49 \times 50$. If I were to calculate the actual value, how many zeros would the answer have at the end?

 

If you liked this problem, here is an NRICH task which challenges you to use similar mathematical ideas.