The square under the hypotenuse

Can you work out the side length of a square that just touches the hypotenuse of a right angled triangle?
Exploring and noticing Working systematically Conjecturing and generalising Visualising and representing Reasoning, convincing and proving
Being curious Being resourceful Being resilient Being collaborative

Image
The square under the hypotenuse

The Square Under the Hypotenuse printable worksheet - initial problem

The Square Under the Hypotenuse printable worksheet -different methods



This right-angled triangle has a base of 3 and a height of 6 units.

How might you construct the square, which just touches the hypotenuse?

Can you work out the side length of the square?

Can you think of more than one way to work it out?

What if the side lengths of the triangle were 12 and 4 units long?

What if they were $a$ and $b$ units long?

 



Once you've had a go at solving this, click below to reveal three different approaches.

Can you take each starting point and turn it into a solution?

Method 1



There are some similar triangles in the image below.

How could you use these similar triangles to find the side length of the square?

Image
The square under the hypotenuse



Method 2



We can draw the triangle on a set of coordinate axes.

What is the equation of the line $BC$?

What do we know about the coordinates of point $E$?

How could you use this to find the side length of the square?

Image
The square under the hypotenuse



Method 3



Can you see how to create the rectangle on the right from the rectangle on the left?

Find expressions for the areas of the two rectangles.

How could you use these expressions to find the side length of the square?

Image
The square under the hypotenuse
        
Image
The square under the hypotenuse