Algebraic differences
If $6x−y=21$ and $6y−x=14$, what is the value of $x−y$?
Problem
If $6x - y = 21$ and $6y - x = 14$, what is the value of $x - y$?
Student Solutions
Answer: $1$
Finding $x-y$ directly
$6x-y=21$ can be written as $5x + (x-y) = 21$
$6y-x=14$ can be written as $5y - (x-y) = 14$
Subtract:
$\begin{align} 5x + (x-y)=21&\\
-\underline{\quad 5y- (x-y)=14}&\\
5x-5y+2(x-y)=\ 7&\\
\ \ \\
\Rightarrow 5(x-y)+2(x-y) =\ 7&\\
\Rightarrow x-y =\ 1&\end{align}$
Finding $x$ and $y$ first
Substitution
$6x-y=21\Rightarrow y=6x-21$
$6y-x=14$ becomes:
$\begin{align}6(6x-21)-x&=14\\
\Rightarrow 36x-126-x&=14\\
\Rightarrow 35x&=140\\
\Rightarrow x&=4\end{align}$
Elimination
$6x-y=21$
$6y-x=14\Rightarrow 36y-6x=84$
Add:
$\begin{align}\ 6x\ -\ y\ =\ 21&\\
+\underline{\quad 36y-6x=\ 84\ }&\\
35y=105&\\
\Rightarrow y =\ \ 3\ \ &\end{align}$