Climbing powers

Does it make any difference how we write powers of powers? 

Problem



We can define $2^{3^{4}}$ either as $(2^{3})^{4}$ or as $2^{(3^{4})}$ . Does it make any difference?

Now calculate $\left(\sqrt 2^{ \sqrt 2 }\right)^{ \sqrt 2 }$ and $\sqrt 2 ^{\left(\sqrt 2 ^{ \sqrt 2 }\right)}$ and answer the following question for the natural extension of both definitions.

Which number is the biggest \[ \sqrt 2 ^{\sqrt 2 ^{\sqrt 2 ^{\sqrt 2 ^{.^{.^{.}}}}}} \]

where the powers of root $2$ go on for ever, or \[ \left(\sqrt 2 ^{\sqrt 2 }\right)^{\sqrt 2} ? \]