You may also like

problem icon

Overarch 2

Bricks are 20cm long and 10cm high. How high could an arch be built without mortar on a flat horizontal surface, to overhang by 1 metre? How big an overhang is it possible to make like this?

problem icon


Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

problem icon

Maximum Flow

Given the graph of a supply network and the maximum capacity for flow in each section find the maximum flow across the network.

The Wheatstone Bridge

Age 16 to 18 Challenge Level:

We can solve the problem using a potential divider or using loop currents.

Loop Currents:

We can assign loop currents to each loop as shown above. At balance the vector sum of the currents through the meter will be zero, we can therefore assign $I_2$to both the left and right loop, the currents will cancel through the meter.

Applying Kirchoff's voltage law to each loop we find that:

$\sum_{Voltages} Left Hand Loop = - (I_2 - I_1)R_1 - I_2 R_x = 0 $

$\sum_{Voltages}Right Hand Loop = -I_2 R_3 -(I_2 - I_1)R_2 = 0 $

We have two independent equations and two unknowns ($I_1$ and $I_2$).

From the left loop: $I_2 = \frac{R_1}{R_1 + R_x} I_1$

From the right loop: $I_2 = \frac{R_2}{R_3 + R_2} I_1$

Equating we see:

$R_1R_3 = R_2R_x$

Potential Divider:

At balance $V_b = V_d$

The potential at C is zero (ground). The potential at A is therefore divided between $R_x$ and $R_3$, in addition it is also divided between $R_1$and $R_2$ .

By potential divider:

$V_b = \frac{R_3}{R_x} V_a$

$V_d = \frac{R_2}{R_1}V_a$

Equating $V_b$ and $V_d$

$R_1 R_3 = R_2 R_x$


If we replace:

$R_2 = Z_2$

We find $Z_2$ by combing the impedance of $C_2$ in parallel with $R_2$

$Z_2= \frac{R_2 \frac{1}{2 \pi f t C \bf i}} {R_2 + 2 \pi f t C \bf i }$

where $i = \sqrt{-1} = i$

$R_3 = Z_3 = $

We find $Z_3$ by combining the imperdance of $C_3$ in series with $R_3$

where $i = \sqrt{-1} = i$

From part 1 we know that:

$R_1Z_3 = Z_2R_x$

Substituting $Z_3$, $Z_4$ and equating real and imaginary terms we find that:

the real part tells us nothing about frequency (cancels)

The imaginary part tells us f = $\frac{1}{2 \pi} \sqrt{\frac{1}{C_3 C_2 R_3 R_2}} $ at balance