Farey neighbours

Farey sequences are lists of fractions in ascending order of magnitude. Can you prove that in every Farey sequence there is a special relationship between Farey neighbours?
Exploring and noticing Working systematically Conjecturing and generalising Visualising and representing Reasoning, convincing and proving
Being curious Being resourceful Being resilient Being collaborative

Problem

You may wish to explore Farey Sequences and Mediant Madness before working on this problem.

The Farey sequence $F_n$ is the list written in increasing order of all the rational numbers between $0$ and $1$ that have only the numbers $1, 2, 3, ... n$ as denominators. We have $$\eqalign{F_1&=\frac{0}{1}, \frac{1}{1}\cr F_2&=\frac{0}{1}, \frac{1}{2}, \frac{1}{1}.}$$

For the two rational numbers $\frac{a}{c}$ and $\frac{b}{d}$ the mediant is defined as $\frac{a+b}{c+d}$.

Show that if $0< \frac{b}{d} < \frac{a}{c}< 1$ then $\frac{b}{d} < \frac{a+b}{c+d} < \frac{a}{c}$.

Each Farey sequence $F_{n+1}$ must contain all of the terms of $F_{n}$, along with some new terms. Each 'new' term in the Farey sequence $F_{n+1}$ is the mediant of two consecutive terms in $F_n$, but not all mediants of consecutive terms of $F_n$ are included: where the denominator of the mediant is greater than $n+1$ the mediant does not occur in $F_{n+1}$ and instead two consecutive terms in $F_n$ are repeated in $F_{n+1}$.

Use the mediants to work out $F_3, F_4$ and $F_5$.

Two consecutive terms in a Farey sequence are known as Farey Neighbours.

Let $\frac{b}{d}$ and $\frac{a}{c}$ be Farey Neighbours. Choose some pairs of Farey Neighbours from the Farey Sequences you have worked out, and calculate $ad-bc$.

What do you notice?

Can you prove it using mathematical induction?

This is the key result that links Farey sequences to infinite sets of circles that are packed together, each circle touching its neighbours. See the problem Ford Circles.