You may also like

problem icon


Ten squares form regular rings either with adjacent or opposite vertices touching. Calculate the inner and outer radii of the rings that surround the squares.

problem icon

So Big

One side of a triangle is divided into segments of length a and b by the inscribed circle, with radius r. Prove that the area is: abr(a+b)/ab-r^2

problem icon

Strange Rectangle 2

Find the exact values of some trig. ratios from this rectangle in which a cyclic quadrilateral cuts off four right angled triangles.

Shape and Territory

Stage: 5 Challenge Level: Challenge Level:1

Sue Liu, S5, Madras College sent in a good solution which shows that if $A, B$ and $C$ are angles in a triangle and $$\tan (A - B) + \tan (B - C) + \tan (C - A) = 0$$ then the triangle is isosceles. Can you prove a stronger result? We start with the expression $$\tan (A - B) + \tan (B - C) + \tan (C - A) = 0.$$ Write $X = A - C$ and $Y = B - C$, then the given expression becomes $$\tan (X - Y) + \tan Y + \tan -X = 0.$$ This gives $$\tan (X - Y) = \tan X - \tan Y$$ and we know the identity $$\tan (X - Y) = {{\tan X - \tan Y}\over {1 - \tan X \tan Y}}.$$ Hence either $$\tan X = \tan Y \quad (1)$$ or $$\tan X \tan Y = 0 \quad (2)$$ In case (1) we show that the angles $X$ and $Y$ are equal. $$|X - Y| = |A - B| < A + B < 180 ^\circ$$ and the tan function is periodic with period 180 degrees so $X = Y.$ This gives $A - C = B - C$ hence $A = B$, so the triangle is isosceles. In case (2), either $\tan X = 0$ or $\tan Y = 0$, hence $A = C$ or $B = C$ and in all the cases the triangle is isosceles.