Skip to main content
### Number and algebra

### Geometry and measure

### Probability and statistics

### Working mathematically

### For younger learners

### Advanced mathematics

# Mapping the Territory

*This activity follows on from Complex Puzzle.*

Use the Geogebra interactivity below to find some pairs of complex numbers whose product is a real number. What do you notice?

Can you explain it algebraically?

Use the Geogebra interactivity to find some pairs of complex numbers whose product is an imaginary number. What do you notice?

Can you explain it algebraically?

In general, what would you need to multiply by $a+bi$ to get a real number? Or to get an imaginary number?

For a given complex number $a + bi$, what would you need to multiply by to get to another given number $x + yi$?

How does this relate to your geometric interpretation of multiplication of complex numbers?

Links to the University of Cambridge website
Links to the NRICH website Home page

Nurturing young mathematicians: teacher webinars

30 April (Primary), 1 May (Secondary)

30 April (Primary), 1 May (Secondary)

Or search by topic

Age 14 to 18

Challenge Level

- Problem
- Student Solutions

*This resource is part of our Adventures with Complex Numbers collection*

Use the Geogebra interactivity below to find some pairs of complex numbers whose product is a real number. What do you notice?

Can you explain it algebraically?

Use the Geogebra interactivity to find some pairs of complex numbers whose product is an imaginary number. What do you notice?

Can you explain it algebraically?

In general, what would you need to multiply by $a+bi$ to get a real number? Or to get an imaginary number?

For a given complex number $a + bi$, what would you need to multiply by to get to another given number $x + yi$?

How does this relate to your geometric interpretation of multiplication of complex numbers?