Rarity
Show that it is rare for a ratio of ratios to be rational.
Problem
Show that there are no integer solutions $m, n$ of the equation $$\left({5\over 4}\right)^m = \left({2\over 1}\right)^n $$ which gives the number of major thirds in an octave on a musical scale.
Given integers $a, b, c $ and $d$ where $a$ and $b$ are coprime and $c$ and $d$ are coprime, find necessary and sufficient conditions for there to exist positive integers $m$ and $n$ such that $$\left({a\over b}\right)^m = \left({c\over d}\right)^n.$$
[The set of three problems Tuning and Ratio , Euclid's Algorithm and Musical Intervals and this problem Rarity were devised by Benjamin Wardaugh who used to be a member of the NRICH team. Benjamin is now doing research on the history of music and mathematics at Oxford University. Read Benjamin's article Music and Euclid's Algorithm for more on this subject.]
Getting Started
The proof depends on the prime factorizations of $a$, $b$, $c$ and $d$.
Student Solutions
Ping sent this solution from Thailand.
(1) If $5^m=4^m 2^n$, then $5 = 2^{2m + n}$ which is impossible as 2 and 5 are prime so there are no positive integer solutions $m$ and $n$ of this equation.
(2) We have $a^m d^n=c^n b^m$. As $a$ and $b$ are coprime, we get $a^m|c^n$. Because $c$ and $d$ are coprime, so $c^n|a^m$. This means $a^m=c^n$. Similarly, $b^m=d^n$.
If $a^m=c^n$ and $b^m=d^n$, then obviously $(a/b)^m=(c/d)^n$.
This implies that $a^m$ and $c^n$ have the same prime factors. Write $a = p_1^{u_1}...p_k^{u_k}$ and $c = p_1^{v_1}...p_k^{v_k}$ and for all $j$ we have $mu_j = nv_j$ so that $${u_1\over v_1} = {u_2\over v_2} = ... = {u_k\over v_k} = {m\over n}.$$ Similarly for $b$ and $d$. This is a very special necessary relationship between $a$ and $c$ and also between $b$ and $d$ so solutions rarely occur to the equation: $$\left({5\over 4}\right)^m = \left({2\over 1}\right)^n.$$ We now show this is a sufficient condition. Conversely suppose $a = p_1^{u_1}...p_k^{u_k}$ and $c = p_1^{v_1}...p_k^{v_k}$ and $${u_1\over v_1} = {u_2\over v_2} = ... = {u_k\over v_k}.$$ We call this common ratio ${n\over m}$ then $u_jm=v_jn$ for all $j$ and $a^m = b^n$. Similarly if corresponding ratios of the powers of the prime factors of $b$ and $d$ are constant and also equal to ${n\over m}$ then $b^m=d^n$ giving $$\left({a\over b}\right)^m = \left({c\over d}\right)^n.$$
Teachers' Resources
What we were looking for in the problem Euclid's Algorithm and Musical Intervals was, if you like, a 'ratio of ratios' but we were not able to find that exactly. In that problem you are asked to find rational approximations for the 'ratio of ratios' using Euclid's algorithm. If the process terminates then you will have found an exact 'ratio of ratios' but generally the process does not terminate.
Here you are asked to prove that 'ratios of ratios' in this sense are (nearly) always irrational.