Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Can you find the chosen number from the grid using the clues?

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

This challenge involves calculating the number of candles needed on birthday cakes. It is an opportunity to explore numbers and discover new things.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

How many trains can you make which are the same length as Matt's, using rods that are identical?

Can you find all the different ways of lining up these Cuisenaire rods?

An investigation that gives you the opportunity to make and justify predictions.

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

What happens when you try and fit the triomino pieces into these two grids?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

Investigate the different ways you could split up these rooms so that you have double the number.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

If you put three beads onto a tens/ones abacus you could make the numbers 3, 30, 12 or 21. What numbers can be made with six beads?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

Using the statements, can you work out how many of each type of rabbit there are in these pens?