Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?
Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?
This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!
Using the statements, can you work out how many of each type of rabbit there are in these pens?
There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.
Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?
Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?
There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?
Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.
Can you substitute numbers for the letters in these sums?
Ben and his mum are planting garlic. Can you find out how many cloves of garlic they might have had?
These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.
This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .
These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.
Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.
How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?
Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?
Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!
Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.
This article for primary teachers suggests ways in which to help children become better at working systematically.
The Zargoes use almost the same alphabet as English. What does this birthday message say?
The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?
What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?
Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?
Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?
Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?
Can you use this information to work out Charlie's house number?
Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.
In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?
There are lots of different methods to find out what the shapes are worth - how many can you find?
This task follows on from Build it Up and takes the ideas into three dimensions!
Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?
Find your way through the grid starting at 2 and following these operations. What number do you end on?
In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?
These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.
A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?
How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?
Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?
These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.
Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?
Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.
In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.
How many possible necklaces can you find? And how do you know you've found them all?
There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.
In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?
Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?
An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.
This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!
There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?
Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?