Arrange the shapes in a line so that you change either colour or shape in the next piece along. Can you find several ways to start with a blue triangle and end with a red circle?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

This activity investigates how you might make squares and pentominoes from Polydron.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

An activity making various patterns with 2 x 1 rectangular tiles.

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Can you substitute numbers for the letters in these sums?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you find all the different triangles on these peg boards, and find their angles?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Ben has five coins in his pocket. How much money might he have?

Can you make square numbers by adding two prime numbers together?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

My coat has three buttons. How many ways can you find to do up all the buttons?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

Can you use the information to find out which cards I have used?