How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

How many different triangles can you make on a circular pegboard that has nine pegs?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you find all the different triangles on these peg boards, and find their angles?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

How many different shapes can you make by putting four right- angled isosceles triangles together?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

What happens when you try and fit the triomino pieces into these two grids?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

An activity making various patterns with 2 x 1 rectangular tiles.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

This challenge is about finding the difference between numbers which have the same tens digit.

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

When I fold a 0-20 number line, I end up with 'stacks' of numbers on top of each other. These challenges involve varying the length of the number line and investigating the 'stack totals'.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

How many trains can you make which are the same length as Matt's and Katie's, using rods that are identical?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you fill in the empty boxes in the grid with the right shape and colour?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Here are some rods that are different colours. How could I make a yellow rod using white and red rods?

Find all the numbers that can be made by adding the dots on two dice.