There are **49** NRICH Mathematical resources connected to **Modular arithmetic**, you may find related items under Numbers and the Number System.

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

On a "move" a stone is removed from two of the circles and placed in the third circle. Here are five of the ways that 27 stones could be distributed.

Ask a friend to choose a number between 1 and 63. By identifying which of the six cards contains the number they are thinking of it is easy to tell them what the number is.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

What can you say about the common difference of an AP where every term is prime?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Which numbers can we write as a sum of square numbers?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Choose any whole number n, cube it, add 11n, and divide by 6. What do you notice?

Can you interpret this algorithm to determine the day on which you were born?

What day of the week were you born on? Do you know? Here's a way to find out.

In this article we shall consider how to solve problems such as "Find all integers that leave a remainder of 1 when divided by 2, 3, and 5."

An example of a simple Public Key code, called the Knapsack Code is described in this article, alongside some information on its origins. A knowledge of modular arithmetic is useful.

You have worked out a secret code with a friend. Every letter in the alphabet can be represented by a binary value.

Find 180 to the power 59 (mod 391) to crack the code. To find the secret number with a calculator we work with small numbers like 59 and 391 but very big numbers are used in the real world for this.

Crack this code which depends on taking pairs of letters and using two simultaneous relations and modulus arithmetic to encode the message.

Decipher a simple code based on the rule C=7P+17 (mod 26) where C is the code for the letter P from the alphabet. Rearrange the formula and use the inverse to decipher automatically.

We only need 7 numbers for modulus (or clock) arithmetic mod 7 including working with fractions. Explore how to divide numbers and write fractions in modulus arithemtic.

Suppose an operator types a US Bank check code into a machine and transposes two adjacent digits will the machine pick up every error of this type? Does the same apply to ISBN numbers; will a machine. . . .

You are given the method used for assigning certain check codes and you have to find out if an error in a single digit can be identified.

Details are given of how check codes are constructed (using modulus arithmetic for passports, bank accounts, credit cards, ISBN book numbers, and so on. A list of codes is given and you have to check. . . .

Find the values of n for which 1^n + 8^n - 3^n - 6^n is divisible by 6.

Prove that for every right angled triangle which has sides with integer lengths: (1) the area of the triangle is even and (2) the length of one of the sides is divisible by 5.

Show that there are infinitely many rational points on the unit circle and no rational points on the circle x^2+y^2=3.

Find and explain a short and neat proof that 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

What is the remainder when 2^{164}is divided by 7?

Time for a little mathemagic! Choose any five cards from a pack and show four of them to your partner. How can they work out the fifth?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

Learn about the rules for a group and the different groups of 4 elements by doing some simple puzzles.

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

What remainders do you get when square numbers are divided by 4?

How many different ways can you arrange the officers in a square?

What are the possible remainders when the 100-th power of an integer is divided by 125?

a) A four digit number (in base 10) aabb is a perfect square. Discuss ways of systematically finding this number. (b) Prove that 11^{10}-1 is divisible by 100.

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

In turn 4 people throw away three nuts from a pile and hide a quarter of the remainder finally leaving a multiple of 4 nuts. How many nuts were at the start?

What is the smallest perfect square that ends with the four digits 9009?

Here are many ideas for you to investigate - all linked with the number 2000.