Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

This challenge is about finding the difference between numbers which have the same tens digit.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Can you find all the ways to get 15 at the top of this triangle of numbers?

This activity involves rounding four-digit numbers to the nearest thousand.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Are these statements relating to calculation and properties of shapes always true, sometimes true or never true?

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Stop the Clock game for an adult and child. How can you make sure you always win this game?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

This problem challenges you to find out how many odd numbers there are between pairs of numbers. Can you find a pair of numbers that has four odds between them?

This task follows on from Build it Up and takes the ideas into three dimensions!

How many centimetres of rope will I need to make another mat just like the one I have here?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Got It game for an adult and child. How can you play so that you know you will always win?

If there are 3 squares in the ring, can you place three different numbers in them so that their differences are odd? Try with different numbers of squares around the ring. What do you notice?

What happens when you round these numbers to the nearest whole number?

An investigation that gives you the opportunity to make and justify predictions.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

What happens when you round these three-digit numbers to the nearest 100?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Find out what a "fault-free" rectangle is and try to make some of your own.

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.