Measure problems for primary learners to work on with others.

Measure problems at primary level that may require resilience.

Use the information on these cards to draw the shape that is being described.

I cut this square into two different shapes. What can you say about the relationship between them?

Can you draw a square in which the perimeter is numerically equal to the area?

Measure problems for inquiring primary learners.

Measure problems at primary level that require careful consideration.

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

This activity investigates how you might make squares and pentominoes from Polydron.

If I use 12 green tiles to represent my lawn, how many different ways could I arrange them? How many border tiles would I need each time?

Sally and Ben were drawing shapes in chalk on the school playground. Can you work out what shapes each of them drew using the clues?

Can you deduce the perimeters of the shapes from the information given?

How can you change the area of a shape but keep its perimeter the same? How can you change the perimeter but keep the area the same?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

Are these statements always true, sometimes true or never true?

Can you find rectangles where the value of the area is the same as the value of the perimeter?

If you move the tiles around, can you make squares with different coloured edges?

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

Points A, B and C are the centres of three circles, each one of which touches the other two. Prove that the perimeter of the triangle ABC is equal to the diameter of the largest circle.

Create some shapes by combining two or more rectangles. What can you say about the areas and perimeters of the shapes you can make?

I'm thinking of a rectangle with an area of 24. What could its perimeter be?

Can you predict, without drawing, what the perimeter of the next shape in this pattern will be if we continue drawing them in the same way?