What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

Explore this interactivity and see if you can work out what it does. Could you use it to estimate the area of a shape?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Have a good look at these images. Can you describe what is happening? There are plenty more images like this on NRICH's Exploring Squares CD.

What do these two triangles have in common? How are they related?

A simple visual exploration into halving and doubling.

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

These practical challenges are all about making a 'tray' and covering it with paper.

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

In how many ways can you halve a piece of A4 paper? How do you know they are halves?

Look at the mathematics that is all around us - this circular window is a wonderful example.

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

Can you put these shapes in order of size? Start with the smallest.

Grandpa was measuring a rug using yards, feet and inches. Can you help William to work out its area?

An investigation that gives you the opportunity to make and justify predictions.

These pieces of wallpaper need to be ordered from smallest to largest. Can you find a way to do it?

A task which depends on members of the group noticing the needs of others and responding.

These pictures were made by starting with a square, finding the half-way point on each side and joining those points up. You could investigate your own starting shape.

Read about David Hilbert who proved that any polygon could be cut up into a certain number of pieces that could be put back together to form any other polygon of equal area.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

Use the information on these cards to draw the shape that is being described.

A follow-up activity to Tiles in the Garden.

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

Investigate how this pattern of squares continues. You could measure lengths, areas and angles.

Here are many ideas for you to investigate - all linked with the number 2000.

You have pitched your tent (the red triangle) on an island. Can you move it to the position shown by the purple triangle making sure you obey the rules?

Choose a box and work out the smallest rectangle of paper needed to wrap it so that it is completely covered.

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Investigate the area of 'slices' cut off this cube of cheese. What would happen if you had different-sized block of cheese to start with?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

An activity for high-attaining learners which involves making a new cylinder from a cardboard tube.

Can you draw a square in which the perimeter is numerically equal to the area?

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

How many centimetres of rope will I need to make another mat just like the one I have here?

What is the total area of the four outside triangles which are outlined in red in this arrangement of squares inside each other?

How would you move the bands on the pegboard to alter these shapes?

If I use 12 green tiles to represent my lawn, how many different ways could I arrange them? How many border tiles would I need each time?

This article for teachers gives some food for thought when teaching ideas about area.

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Are these statements always true, sometimes true or never true?

Measure problems at primary level that may require resilience.