Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Use the clues about the symmetrical properties of these letters to place them on the grid.

A Sudoku with clues given as sums of entries.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

How many different triangles can you make on a circular pegboard that has nine pegs?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Can you fill in the empty boxes in the grid with the right shape and colour?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you replace the letters with numbers? Is there only one solution in each case?

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

In Sam and Jill's garden there are two sorts of ladybirds with 7 spots or 4 spots. What numbers of total spots can you make?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Can you make square numbers by adding two prime numbers together?

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Can you draw a square in which the perimeter is numerically equal to the area?

On my calculator I divided one whole number by another whole number and got the answer 3.125 If the numbers are both under 50, what are they?

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?

During the third hour after midnight the hands on a clock point in the same direction (so one hand is over the top of the other). At what time, to the nearest second, does this happen?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Arrange the shapes in a line so that you change either colour or shape in the next piece along. Can you find several ways to start with a blue triangle and end with a red circle?