Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Arrange the shapes in a line so that you change either colour or shape in the next piece along. Can you find several ways to start with a blue triangle and end with a red circle?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

Can you draw a square in which the perimeter is numerically equal to the area?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

An activity making various patterns with 2 x 1 rectangular tiles.

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

An investigation that gives you the opportunity to make and justify predictions.

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Find out what a "fault-free" rectangle is and try to make some of your own.

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

This activity investigates how you might make squares and pentominoes from Polydron.

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

These practical challenges are all about making a 'tray' and covering it with paper.

Number problems at primary level that require careful consideration.

Can you find all the different ways of lining up these Cuisenaire rods?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?