Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Lorenzie was packing his bag for a school trip. He packed four shirts and three pairs of pants. "I will be able to have a different outfit each day", he said. How many days will Lorenzie be away?

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

How many different shapes can you make by putting four right- angled isosceles triangles together?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Can you find out in which order the children are standing in this line?

Can you create jigsaw pieces which are based on a square shape, with at least one peg and one hole?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

Find all the numbers that can be made by adding the dots on two dice.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

My coat has three buttons. How many ways can you find to do up all the buttons?

Moira is late for school. What is the shortest route she can take from the school gates to the entrance?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

The brown frog and green frog want to swap places without getting wet. They can hop onto a lily pad next to them, or hop over each other. How could they do it?

In Sam and Jill's garden there are two sorts of ladybirds with 7 spots or 4 spots. What numbers of total spots can you make?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

This challenge is about finding the difference between numbers which have the same tens digit.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Take three differently coloured blocks - maybe red, yellow and blue. Make a tower using one of each colour. How many different towers can you make?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

The Red Express Train usually has five red carriages. How many ways can you find to add two blue carriages?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?