This train line has two tracks which cross at different points. Can you find all the routes that end at Cheston?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Moira is late for school. What is the shortest route she can take from the school gates to the entrance?

How many different journeys could you make if you were going to visit four stations in this network? How about if there were five stations? Can you predict the number of journeys for seven stations?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Investigate the different ways you could split up these rooms so that you have double the number.

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

If you put three beads onto a tens/ones abacus you could make the numbers 3, 30, 12 or 21. What numbers can be made with six beads?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

What could the half time scores have been in these Olympic hockey matches?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you see who the gold medal winner is? What about the silver medal winner and the bronze medal winner?

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

In how many ways can you stack these rods, following the rules?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

On my calculator I divided one whole number by another whole number and got the answer 3.125. If the numbers are both under 50, what are they?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

My dice has inky marks on each face. Can you find the route it has taken? What does each face look like?

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.