How will you go about finding all the jigsaw pieces that have one peg and one hole?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

What happens when you try and fit the triomino pieces into these two grids?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you find all the different ways of lining up these Cuisenaire rods?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

These practical challenges are all about making a 'tray' and covering it with paper.

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

This challenge is about finding the difference between numbers which have the same tens digit.

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Find all the numbers that can be made by adding the dots on two dice.

What is the least number of moves you can take to rearrange the bears so that no bear is next to a bear of the same colour?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?