How many models can you find which obey these rules?

This activity investigates how you might make squares and pentominoes from Polydron.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

If you had 36 cubes, what different cuboids could you make?

Take three differently coloured blocks - maybe red, yellow and blue. Make a tower using one of each colour. How many different towers can you make?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

Chandra, Jane, Terry and Harry ordered their lunches from the sandwich shop. Use the information below to find out who ordered each sandwich.

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

What happens when you try and fit the triomino pieces into these two grids?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

This challenge is about finding the difference between numbers which have the same tens digit.

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?