What's my equation?

Can you find the differential equations giving rise to these famous solutions?
Exploring and noticing Working systematically Conjecturing and generalising Visualising and representing Reasoning, convincing and proving
Being curious Being resourceful Being resilient Being collaborative

Problem





The solution is:

$$X(t) = K \exp\left(\log\left(\frac{X(0)}{K}\right)\exp(-\alpha t)\right)$$

Can you find a nice differential equation which this solution satisfies?

The solution is:

$$P(t) = \frac{a\exp(bt)}{a-1+exp(bt)}$$

Can you find a nice differential equation which this solution satisfies?

 
Did you know ... ?

There is a branch of mathematics concerned with solving so-called 'inverse-problems'. In an inverse problem you begin with a solution, or some partial solution, and attempt to construct the equations or theories which might give rise to it. The first solution in this problem is called the Gomperz function and is used to model the size of tumors. Perhaps you might discover the uses for the second solution?