Walls
Plane 1 contains points A, B and C and plane 2 contains points A
and B. Find all the points on plane 2 such that the two planes are
perpendicular.
Problem
Let $P_1$ be a plane through the points $A(2,1,0), B(1,1,1)$ and $C(1,7,3)$ and $P_2$ be a plane through the points $A$, $B$ and $V(x,y,z)$.
Find all the points $V(x,y,z)$ such that the two planes are perpendicular.
Getting Started
There are several possible methods. You might find the equations of the planes and the normal directions to the planes.
Student Solutions
Christopher from Farnborough 6th Form College and Tim from Royds School solved this problem using different methods so here are both their solutions. Christopher found the Cartesian equations of both planes and Tim's shorter method used vector and scalar products.
This is Christopher's solution: Let $P_1$ be a plane through the points $A(2,1,0), B(1,1,1)$ and $C(1,7,3)$ and $P_2$ be a plane through the points $A, B$ and $V(x,y,z)$. Find all the points $V(x,y,z)$ such that the two planes are perpendicular.
The general equation of a plane in 3 dimensional Cartesian space is:
By substituting the $x, y$, and $z$ values from the points $A, B$, and $C$ into the general equation, it is possible to obtain the three equations below involving $p, q$, and $r$ that can be solved simultaneously to derive the formula of the plane $P_1$.
Subtracting equation (2) from (1):
Finally, substituting this into (1) gives:
The translation is applied to point $A(2,1,0)$, giving the point $D(5,0,3)$. Using the points $A, B$, and $D$, which all lie on the plane $P_2$, the formula for $P_2$ can be determined:
From (4) - (5)
This is Tim's method:
Let $a \times b$ denote the cross product of $a$ and $b$. Let $v_1 = AC \times AB$ (which is perpendicular to $P_1$). Let $v_2 = AB \times AV$ (which is perpendicular to $P_2$).
As $P_1$ and $P_2$ are perpendicular, $v_1$ and $v_2$ are perpendicular as the angle between the planes is the same as that between their perpendiculars. Thus, the scalar product $v_1.v_2 = 0$.
Note: $(6,-2,6).(1,6,1) = 6 - 12 + 6 = 0$ i.e. the two planes are perpendicular (as required).
Also, $A$ and $B$ are in $P_2$ (as required) since $(2,1,0)$ and $(1,1,1)$ are solutions of the equation.
Teachers' Resources
If a plane contains a variable point $P$ with position vector ${\bf r}$, and if ${\bf n}$ is a unit vector perpendicular to the plane, then consider the right angled triangle $OPN$, where $N$ is the foot of the perpendicular from the origin $O$ to the plane and $ON=d$ is the perpendicular distance from the origin to the plane. Then $ON = OP \cos \angle PON$ which is given by the scalar product $ {\bf r.n}$ so the equation of the plane is given by ${\bf r.n}= d$.
In Cartesian form ${\bf r}=(x,y,z)$ and ${\bf n} = (a,b,c)$ so ${\bf r.n}= d$ translates to $ax+by+cz=d$.