Turning to calculus

Get started with calculus by exploring the connections between the sign of a curve and the sign of its gradient.
Exploring and noticing Working systematically Conjecturing and generalising Visualising and representing Reasoning, convincing and proving
Being curious Being resourceful Being resilient Being collaborative

Problem



The following curve turns once. It changes sign twice and the sign of its gradient changes once, giving rise to four distinct regions, as shown in the image below:

Image
Turning to calculus


What are the different possibilities of sign combination for a curve which turns exactly once? How can you be sure you have found them all? Give a clear explanation.
 

Which are the different possibilities of sign combination for a curve which turns exactly twice? How can you be sure you have found them all? Give a clear explanation.

 

Explore other numbers of turns and the curves which give rise to various numbers of regions.



It is not intended that you use algebra; simply experiment with sketches and focus on clear mathematical reasoning.

Further extensions:
Once you have a good feel for the setup, you might wish to think about these more tricky or general questions:
 
1. Are there any curves which always have the same sign for the function and gradient?
2. Are there any curves which always have the opposite sign for the function and gradient?
3. Are there any impossible combinations of sign?
4. How do zeros of the function and zeros of the gradient enter into the analysis?
5. Find algebraic expressions for any functions you use in this problem.