Cuboid perimeters
Can you find the volume of a cuboid, given its perimeters?
Problem
The 'perimeter' of a cuboid can be mea
Image
One 'perimeter' of this cuboid is shown.
If the 'perimeters' of a cuboid are 12 cm, 16 cm and 24 cm, what is the volume of the cuboid?
This problem is adapted from the World Mathematics Championships
Student Solutions
Answer: $35\text{cm}^3$
Label the widths $a, b, c$
Image
This perimeter is equal to $a+b+a+b=2a+2b$
Image
This perimeter is equal to $2a+2c$
Similarly, the third perimeter will be equal to $2b+2c$
$$2a+2b=12\Rightarrow a+b=6\\
2a+2c=16\Rightarrow a+c=8\\
2b+2c=24\Rightarrow b + c = 12$$
Solving by elimination
$\quad\qquad a+b=\ 6\\
\underline{+\ \quad\quad a+c=\ 8\ \ }\\
\quad 2a+b+c=14$
$\quad 2a+b+c=14\\
\underline{-\ \quad\quad b+c=12\ \ }\\
\quad \qquad\quad \ 2a=\ 2$
$\therefore a=1$
So $b=5$, $c=7$, volume $=1\times5\times7=35\text{cm}^3$
Solving by substitution
$a+b=6\Rightarrow b=6-a\\
a+c=8\Rightarrow c=8-a\\
\begin{align}b + c = 12\Rightarrow &(6-a)+(8-a)=12\\
\Rightarrow &14-2a=12\\
\Rightarrow &a=1\end{align}$
So $b=5$, $c=7$, volume $=1\times5\times7=35\text{cm}^3$
Adding all of the equations together
$\quad\qquad a+b=\ 6\\
\qquad\quad a+c=\ 8\\
\underline{+\ \quad\quad b+c=12\ \ }\\
\ \ \ 2a+2b+2c=26$
$\therefore a+b+c=13$
$c=13-6=7$
$b=13-8=5$
$a=13-12=1$
So the volume is $1\times5\times7=35\text{cm}^3$.