Squeezed in
Weekly Problem 9 - 2017
What integer x makes x/9 lie between 71/7 and 113/11?
What integer x makes x/9 lie between 71/7 and 113/11?
Problem
What integer $x$ makes $\frac{x}{9}$ lie between $\frac{71}{7}$ and $\frac{113}{11}$?
If you liked this problem, here is an NRICH task that challenges you to use similar mathematical ideas.
Student Solutions
Answer: $92$
Using mixed numbers
$\frac{71}{7} = 10\frac 17$ and $\frac{113}{11} = 10\frac{3}{11}$
$10$ and some ninths
$\frac19\lt\frac17$
$\frac29\gt\frac17$, is $\frac29\lt\frac3{11}$?
$\frac29=\frac{22}{99}$ and $\frac3{11}=\frac{27}{99}$ so yes
$10\frac29=\frac{92}9$
Using decimals
$\frac x9$ is either a whole number, or a recurring decimal like $_.11\dot{1}$ of $_.22\dot2$ etc.
Image
Image
$10.22\dot2$ is between $10.14...$ and $10.27...$
$10.22\dot2=10\frac29=\frac{92}9$
Using inequalities
$\frac{71}{7} = \frac{71\times11}{77}=\frac{770+11}{77}$
$\frac{113}{11} = \frac{113\times7}{77}=\frac{770+21}{77}$
$\therefore \frac{71}7\lt\frac x9\lt\frac{113}{11}$
- $\frac x9 \gt \frac{71}{7}$, so $x \gt \frac{9 \times 71}7 = \frac{639}7 = 91\frac 27$.
- $\frac x9 \lt \frac{113}{11}$, so $x \lt \frac{9 \times 113}{11} = \frac{1017}{11} = 92 \frac{5}{11}$.