More pebbles

Have a go at this 3D extension to the Pebbles problem.
Exploring and noticing Working systematically Conjecturing and generalising Visualising and representing Reasoning, convincing and proving
Being curious Being resourceful Being resilient Being collaborative

Problem



This follows on from Pebbles. You may need to have a go at that problem first.


Now you are in a planet of no gravity. Pebbles placed in the air will stay there!
So, when we have eight pebbles we can form a cube in mid-air with a pebble at each vertex:


Image
More pebbles
(If you are struggling to see this, it might help to view the black lines as the bottom layer; blue lines as ascending edges; green lines as the top layer.)


We'll call this a cube of volume $1$.
Like the Pebbles activity, you have to add the smallest number of new pebbles to double the volume (rather than area) making cuboids (rather than rectangles) each time. Pebbles must be equidistant from the next ones in the same level. That is the pink, blue, green and black lines in the diagrams below need to be all the same length.


So, the next two could be as shown here.


Image
More pebbles
So remember:-
The rule is that you keep the pebbles that are there already (not moving them to any new positions) and add as FEW pebbles as necessary to DOUBLE the PREVIOUS volume. All have to be equidistant so the third one CANNOT be like this;


Image
More pebbles


Well, now it's time for you to have a go.
 
"It's easy,'' I hear you say. Well, that's good.
But what questions can we ask about the arrangements that we are getting?
We could make a start by saying, "Stand back and look at the shapes you are getting. What do you see?''
I guess you may see quite a lot of different things. It would be good for you to do some more of this pattern. See how far you can go.


Well now, what about some questions to explore?
Here are some I've thought of that look interesting:
1. How many extra pebbles are added each time? This starts off $4, 6, 9,$ . . .
2. How many are there around the outside? This starts off $8, 12, 18,$ . . .
3. How many are there inside? This starts off $0, 0, 0,$ . . .
4. How big is the surface area? This starts off $6, 10, 16,$ . . .


Can you find a way of knowing how the numbers progress for these type of questions?


Try to answer these, and any other questions you come up with, and perhaps put them in a kind of table/graph/spreadsheet etc.
Do let me see what you get - I'll be most interested. Don't forget the all-important question you should ask - "I wonder what would happen if I ...?''