Chameleons

Whenever two chameleons of different colours meet they change colour to the third colour. Describe the shortest sequence of meetings in which all the chameleons change to green if you start with 12 green, 15 brown and 18 yellow chameleons.
Exploring and noticing Working systematically Conjecturing and generalising Visualising and representing Reasoning, convincing and proving
Being curious Being resourceful Being resilient Being collaborative

Problem

On a certain island there are 12 green, 15 brown and 18 yellow chameleons. Whenever two chameleons of different colours meet they always change colour to the third colour (e.g. a brown and a yellow would both change to green when they met). This is the only time they change colour. Describe the shortest sequence of meetings in which all the chameleons change to green.

Now suppose there are 13 green, 15 brown and 17 yellow chameleons and they change colour in exactly the same circumstances. Is it possible now for all the chameleons eventually to be the same colour?