Proof of the formula $a + ax + ax^2 + ... + ax^{n-1} = \frac{a(1-x^n)}{(1-x)}$ where $x \neq 1$
Put the statements in order
$S_n(1-x)=(1-x)(a + ax + ax^2 + ... + ax^{n-1})$
Simplify the right hand side by collecting like terms
$S_n = \frac{a(1-x^n)}{(1-x)}$
Divide both sides by $(1-x)$
The sum of n terms of the series is written
$S_n = a + ax + ax^2 + ax^3 +...+ ax^{n-1}$
$S_n(1-x) = a - ax + ax - ax^2 + ax^2 - ax^3 + ... $
$ ... - ax^{n-1} + ax^{n-1} - ax^n$
$S_n(1-x)=a - ax^n$
Multiply both sides by $(1-x)$
$S_n(1-x)=a(1-x^n)$
Expand the right hand side
Take out the common factor on the right hand side