You may also like

At a Glance

The area of a regular pentagon looks about twice as a big as the pentangle star drawn within it. Is it?

Six Discs

Six circular discs are packed in different-shaped boxes so that the discs touch their neighbours and the sides of the box. Can you put the boxes in order according to the areas of their bases?

Equilateral Areas

ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.

Rhombus in Rectangle

Age 14 to 16 Challenge Level:

Another Tough Nut! Take any rectangle $ABCD$ such that $AB > BC$ and say the lengths of $AB$ and $CD$ are $S$ and $s$ respectively. The point $P$ is on $AB$ and $Q$ is on $CD$. For $APCQ$ to be a rhombus, the lengths $AP$ and $PC$ must be equal. Consider the point $P$ coinciding with $A$ (such that $AP=0$) and then $P$ moving along $AB$ so that the length $AP$ increases continuously from $0$ to $S$ while the length of $PC$ decreases continuously from $\sqrt{S^2 + s^2}$ to $s$. As $AP < PC$ initially (when P is at A) and $AP > PC$ finally (when $P$ is at $B$) there must be one point at which $AP = PC$. Similarly there is exactly one position of $Q$ such that $CQ = QA$ making $APCQ$ into a rhombus.

Now take $AP = PC = x$ than you can use Pythagoras' Theorem to find $x$ in terms of $S$ and $s$ so that you can find the ratio of the areas of the areas of the rhombus and the rectangle.