Skip to main content
### Number and algebra

### Geometry and measure

### Probability and statistics

### Working mathematically

### For younger learners

### Advanced mathematics

# Differential Electricity

Kirchoff's Voltage Law:

$V_0 = V_L + V_R + V = L\frac{dI_1}{dt} + IR + V$

Current conservation at node X:

$I_1 = I_2 + I_3 $

$I_2 = I_C = C\frac{dV}{dt}$

$I_3 = \frac{V}{R}$

$I_1 = C\frac{dV}{dt} + \frac{V}{R} $

$\frac{dI_1}{dt} = C\frac{d^2V}{dt^2} +\frac{1}{R} \frac{dV}{dt}$

$V_0 = L(C\frac{d^2V}{dt^2} +\frac{1}{R} \frac{dV}{dt}) + (C\frac{dV}{dt} + \frac{V}{R})R + V = LC \frac{d^2V}{dt^2} + (\frac{L}{R} + CR)\frac{dV}{dt} + 2V$

The governing differential equation is:

$LC \frac{d^2V}{dt^2} + (\frac{L}{R} + CR)\frac{dV}{dt} + 2V = V_0 $

Or search by topic

Age 16 to 18

Challenge Level

- Problem
- Getting Started
- Student Solutions

Kirchoff's Voltage Law:

$V_0 = V_L + V_R + V = L\frac{dI_1}{dt} + IR + V$

Current conservation at node X:

$I_1 = I_2 + I_3 $

$I_2 = I_C = C\frac{dV}{dt}$

$I_3 = \frac{V}{R}$

$I_1 = C\frac{dV}{dt} + \frac{V}{R} $

$\frac{dI_1}{dt} = C\frac{d^2V}{dt^2} +\frac{1}{R} \frac{dV}{dt}$

$V_0 = L(C\frac{d^2V}{dt^2} +\frac{1}{R} \frac{dV}{dt}) + (C\frac{dV}{dt} + \frac{V}{R})R + V = LC \frac{d^2V}{dt^2} + (\frac{L}{R} + CR)\frac{dV}{dt} + 2V$

The governing differential equation is:

$LC \frac{d^2V}{dt^2} + (\frac{L}{R} + CR)\frac{dV}{dt} + 2V = V_0 $