Skip to main content
### Number and algebra

### Geometry and measure

### Probability and statistics

### Working mathematically

### For younger learners

### Advanced mathematics

# Farey Fibonacci

Denoting the Fibonacci numbers $1,1,2,3,5,8,...$ by $f_n$ where $f_n=f_{n-1}+ f_{n-2}$ prove for all positive integer values of $n$ that $\frac{f_n}{f_{n+2}}$ and $\frac{f_{n+1}}{f_{n+3}}$ are Farey neighbours, that is $|f_{n+1}f_{n+2}-f_nf_{n+3}|=1$.

Show that the mediant of $\frac{f_n}{f_{n+2}}$ and $\frac{f_{n+1}}{f_{n+3}}$ is $\frac{f_{n+2}}{f_{n+4}}$.

See the problem Farey Neighbours.

## You may also like

### Converging Product

### OK! Now Prove It

### Overarch 2

Or search by topic

Age 16 to 18

ShortChallenge Level

Denoting the Fibonacci numbers $1,1,2,3,5,8,...$ by $f_n$ where $f_n=f_{n-1}+ f_{n-2}$ prove for all positive integer values of $n$ that $\frac{f_n}{f_{n+2}}$ and $\frac{f_{n+1}}{f_{n+3}}$ are Farey neighbours, that is $|f_{n+1}f_{n+2}-f_nf_{n+3}|=1$.

Show that the mediant of $\frac{f_n}{f_{n+2}}$ and $\frac{f_{n+1}}{f_{n+3}}$ is $\frac{f_{n+2}}{f_{n+4}}$.

See the problem Farey Neighbours.

In the limit you get the sum of an infinite geometric series. What about an infinite product (1+x)(1+x^2)(1+x^4)... ?

Make a conjecture about the sum of the squares of the odd positive integers. Can you prove it?

Bricks are 20cm long and 10cm high. How high could an arch be built without mortar on a flat horizontal surface, to overhang by 1 metre? How big an overhang is it possible to make like this?