You may also like

problem icon

Archimedes and Numerical Roots

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

problem icon

Rationals Between...

What fractions can you find between the square roots of 65 and 67?

problem icon

Root to Poly

Find the polynomial p(x) with integer coefficients such that one solution of the equation p(x)=0 is $1+\sqrt 2+\sqrt 3$.

Consecutive Squares

Age 14 to 16 Challenge Level:

If we take any 8 consecutive numbers: $$n, n+1, n+2, n+3, n+4, n+5, n+6, n+7$$ then the sum of the squares of four of these numbers is equal to the sum of the squares of the other four.

This means that the terms in $x^2$ in $x$ and the constant term must be split equally.

If we sum the squares of each of the eight consecutive numbers and find the mean, this will equal the sum of each of the four terms needed. So adding all the squares we have: $$n^2 + (n+1)^2 + (n+2)^2 + (n+3)^2 + (n+4)^2 (n+5)^2 + (n+6)^2 + (n+7)^2 = 8n^2 + 56n + 140 $$ So the two sides of the equality must have the value $$4n^2 + 28n + 70$$ $$(n+1)^2 + (n+2)^2 + (n+4)^2 +(n+7)^2 = n^2 + (n+3)^2 + (n+5)^2 + (n+6)^2$$