Skip to main content
### Number and algebra

### Geometry and measure

### Probability and statistics

### Working mathematically

### For younger learners

### Advanced mathematics

# Two Circles

## You may also like

### Giant Holly Leaf

### Quadarc

### Get Cross

Or search by topic

Age 14 to 16

Challenge Level

- Problem
- Student Solutions

Draw two circles, each of radius $1$ unit, so that each circle goes through the centre of the other one. What is the area of the overlap?

Find the perimeter and area of a holly leaf that will not lie flat (it has negative curvature with 'circles' having circumference greater than 2πr).

Given a square ABCD of sides 10 cm, and using the corners as centres, construct four quadrants with radius 10 cm each inside the square. The four arcs intersect at P, Q, R and S. Find the area enclosed by PQRS.

A white cross is placed symmetrically in a red disc with the central square of side length sqrt 2 and the arms of the cross of length 1 unit. What is the area of the disc still showing?