Knight Defeated

The knight's move on a chess board is 2 steps in one direction and one step in the other direction. Prove that a knight cannot visit every square on the board once and only (a tour) on a 2 by n board for any value of n. How many ways can a knight do this on a 3 by 4 board?
Exploring and noticing Working systematically Conjecturing and generalising Visualising and representing Reasoning, convincing and proving
Being curious Being resourceful Being resilient Being collaborative

Problem



You do not need to be able to play chess to solve this problem.

The standard move for a knight on a chess board is $2$ steps in one direction and one step in the other direction. A knight's tour is a sequence of moves in which the knight visits every square on the board once and only once and a circuit is a tour in which the knight returns to the starting point.

Prove that a knight cannot make a tour on a $2$ by $n$ board for any value of $n$.

How many different tours can you find on a $3$ by $4$ rectangular board?

Image
Knight Defeated


Prove that a knight cannot make a circuit on a $3$ by $4$ rectangular board.