You may also like

problem icon

Spirostars

A spiropath is a sequence of connected line segments end to end taking different directions. The same spiropath is iterated. When does it cycle and when does it go on indefinitely?

problem icon

Be Reasonable

Prove that sqrt2, sqrt3 and sqrt5 cannot be terms of ANY arithmetic progression.

problem icon

The Root Cause

Prove that if a is a natural number and the square root of a is rational, then it is a square number (an integer n^2 for some integer n.)

Rational Roots

Age 16 to 18 Challenge Level:

Suppose that a and b are natural numbers. If $\sqrt{a} + \sqrt{b}$ is rational then show that it is a natural number. Show that, indeed both $\sqrt{a}$ and $\sqrt{b}$ are then integers.

Suppose that a, b and c are natural numbers. If $\sqrt{a} + \sqrt{b} + \sqrt{c}$ is rational then show that it is a natural number. Moreover show that $\sqrt{a}$ , $\sqrt{b}$ and $\sqrt{c}$ are then integers.