Janusz asked
In y = ax +b when are a, -b/a, b in arithmetic progression. The
polynomial y = ax^2 + bx + c has roots r1 and r2. Can a, r1, b, r2
and c be in arithmetic progression?
Problem
Start with the linear polynomial: $y = -3x + 9$. The
$x$-coefficient, the root and the intercept are -3, 3 and 9
respectively, and these are in arithmetic progression. Are there
any other linear polynomials that enjoy this property?
What about quadratic polynomials? That is, if the polynomial \[y = ax^2 + bx + c\] has roots $r_1$ and $r_2,$ can $a$, $r_1$, $b$, $r_2$ and $c$ be in arithmetic progression?
[The idea for this problem came from Janusz Kowalski of the Kreator Project.]
What about quadratic polynomials? That is, if the polynomial \[y = ax^2 + bx + c\] has roots $r_1$ and $r_2,$ can $a$, $r_1$, $b$, $r_2$ and $c$ be in arithmetic progression?
[The idea for this problem came from Janusz Kowalski of the Kreator Project.]
Getting Started
For $y = ax + b$, if you can use the given conditions and write $b$
in terms of $a$, then for any value of $a$ there will be a linear
function with this property.
For the second part use the formula relating the sum of the roots and the coefficients and then work systematically to consider all cases.
For the second part use the formula relating the sum of the roots and the coefficients and then work systematically to consider all cases.
Student Solutions
We start with the linear polynomial $y = -3x + 9$. The $x$-coefficient is $-3$, the root is $3$, the intercept is $9$, and these numbers are in arithmetic progression. Suppose now that the same is true of the polynomial $y = ax + b$, where $a\neq 0$. In this case, the numbers $a$, $-b/a$ and $b$ must be in arithmetic progression. Does this enable you to find a relationship between $a$ and $b$ and hence to find a condition giving infinitely many polynomials with this property? Now consider the quadratic polynomial $$y = ax^2 + bx + c$$ with roots $r_1$ and $r_2$, and suppose that the numbers $a$, $r_1$, $b$, $r_2$ and $c$ are in arithmetic progression. You may find it easiest here to use the sum and product of the roots, namely $-b/a$ and $c/a$ and the common difference, and to avoid using the quadratic formula.
Andaleeb Ahmed of Woodhouse Sixth Form College, London has provided a solution to this problem.
We started with the linear polynomial $y = -3x + 9$. The $x$-coefficient is $-3$, the root is $3$, the intercept is $9$, and these numbers are in arithmetic progression. Suppose now that the same is true of the polynomial $y=ax+b$, where $a\neq 0$. In this case, the numbers $a$, $-b/a$ and $b$ must be in arithmetic progression.
Then: $${-b\over a} - a = b +{b\over a}$$ $$-b - a^2 = ab + b$$ $$ a^2 + ba + 2b = 0$$ We can use this to express $a$ in terms of $b$ or $b$ in terms of $a$: $$a = {{-b\pm \sqrt{b^2 - 8b}}\over 2}\quad \quad (b\geq 8 \ {\rm or}\ b < 0).$$ $$b={-a^2\over (a+2)}\quad \quad (a\neq -2).$$ We can randomly choose $b$ (such that $b\geq 8$ or $b < 0$) and use the formula to find the corresponding values of $a$, or alternatively, we could choose any value of $a$ except $a = -2$ and find the corresponding value of $b$ from the given formula.
The linear polynomial is $$y = ax - \left({a^2\over a+2}\right).$$ It is easily checked that this polynomial does have the required property for any value of $a$ and clearly there are infinitely many such polynomials.
Now consider $y = ax^2 + bx +c$, where $a, \alpha, b, \beta,c$ are in arithmetic progression. Using the sum of the roots: $$\beta + \alpha = -{b\over a} \quad (1).$$ Also, since they are in arithmetic progression: $$\beta -\alpha = b - a \quad (2).$$ Adding the two equations we get: $$\beta = {-b + ab - a^2\over 2a}.$$ Subtracting the two equations we get: $$\alpha = {-b - ab + a^2\over 2a}.$$ Since $a, \alpha, b, \beta, c$ are in arithmetic progression: $$\alpha - a = b - \alpha$$ $$\Rightarrow 2\alpha = a + b $$ $$\Rightarrow {-b - ab + a^2\over a} = a + b.$$ By solving this equation , we get $b = 0$ or $a = -1/2$.
Case 1: $b = 0$
Since $\alpha - a = b - \alpha$ we have $\alpha = a/2$ and similarly $\beta = c/2.$ Now it can be said that $a, {a\over 2}, 0, {c\over 2}, c$ are in arithmetic progression, hence $c = -a$.
Thus the equation $y = ax^2 + bx + c$ becomes $y = ax^2 - a$ with $\alpha = {a\over 2}$ and $\beta = -{a\over 2}$. Hence $$0 = a\big( ({a\over 2})^2 - 1\big) = a\big( ({-a\over 2})^2 - 1\big).$$ From these equations we get $a = \pm 2$ or 0. Thus when $b = 0$, we have the following equations that satisfy the above property: $y = 2x^2 - 2$ and $y = -2x^2 + 2.$
Case 2: $a = -1/2$
Here $\alpha = {a + b\over 2} = {2b - 1\over 4}.$ Since $\beta - \alpha = b - a$ $$\beta = {2b - 1\over 4} + b + {1\over 2} = {6b + 1\over 4}.$$ Now it can be said that $-{1\over 2},\ {2b - 1\over 4},\ b,\ {6b + 1\over 4},\ c$ are in arithmetic progression. So $${6b + 1\over 4} - {2b - 1\over 4} = c - b$$ and thus $c = {4b + 1\over 2}.$ Thus $y = ax^2 + bx + c$ becomes $y = -{1\over 2}x^2 + bx + {4b+1\over 2}.$ As we know $y=0$ when $x=\alpha$ this gives $$-{1\over 2}\big({2b-1\over 4}\big)^2 + b\big({2b - 1\over 4}\big) + {4b+1\over 2} = 0.$$ Simplifying and rearranging the equation we get: $$12b^2 + 60b + 15 = 0.$$ Thus $$b = {-5 \pm 2\sqrt 5\over 2},$$ and $$c = {4b + 1\over 2} = {-9 \pm 4\sqrt 5\over 2},$$ and so, when $a = -{1\over 2}$, we have quadratic polynomials with the required property for these values of $b$ and $c$.
It can now be said that there are a finite number of quadratic polynomials $y = ax^2 + bx + c$ for which $a,\ \alpha,\ b,\ \beta,$ and $c$ are in arithmetic progression, and these occur when $a = \alpha = b = \beta = c = 0$ (trivially) or when $$a = \pm 2,\ \alpha = \pm 1,\ b = 0,\ \beta = \mp 1, \ c = \mp 2$$ or when $$a = -{1\over 2},\ \alpha = {-3 \pm \sqrt 5\over 2},\ b = {-5 \pm 2\sqrt 5\over 2},\ \beta = {-7 \pm 3\sqrt 5\over 2},\ c = {-9 \pm 4\sqrt 5\over 2}.$$