Skip to main content
### Number and algebra

### Geometry and measure

### Probability and statistics

### Working mathematically

### For younger learners

### Advanced mathematics

# Janusz Asked

## You may also like

### Real(ly) Numbers

### Polynomial Relations

### More Polynomial Equations

Or search by topic

Age 16 to 18

Challenge Level

Start with the linear polynomial: $y = -3x + 9$. The
$x$-coefficient, the root and the intercept are -3, 3 and 9
respectively, and these are in arithmetic progression. Are there
any other linear polynomials that enjoy this property?

What about quadratic polynomials? That is, if the polynomial \[y = ax^2 + bx + c\] has roots $r_1$ and $r_2,$ can $a$, $r_1$, $b$, $r_2$ and $c$ be in arithmetic progression?

[The idea for this problem came from Janusz Kowalski of the Kreator Project.]

What about quadratic polynomials? That is, if the polynomial \[y = ax^2 + bx + c\] has roots $r_1$ and $r_2,$ can $a$, $r_1$, $b$, $r_2$ and $c$ be in arithmetic progression?

[The idea for this problem came from Janusz Kowalski of the Kreator Project.]

If x, y and z are real numbers such that: x + y + z = 5 and xy + yz + zx = 3. What is the largest value that any of the numbers can have?

Given any two polynomials in a single variable it is always possible to eliminate the variable and obtain a formula showing the relationship between the two polynomials. Try this one.

Find relationships between the polynomials a, b and c which are polynomials in n giving the sums of the first n natural numbers, squares and cubes respectively.