Janusz asked

In y = ax +b when are a, -b/a, b in arithmetic progression. The polynomial y = ax^2 + bx + c has roots r1 and r2. Can a, r1, b, r2 and c be in arithmetic progression?
Exploring and noticing Working systematically Conjecturing and generalising Visualising and representing Reasoning, convincing and proving
Being curious Being resourceful Being resilient Being collaborative

Problem

Start with the linear polynomial: $y = -3x + 9$. The $x$-coefficient, the root and the intercept are -3, 3 and 9 respectively, and these are in arithmetic progression. Are there any other linear polynomials that enjoy this property?

What about quadratic polynomials? That is, if the polynomial \[y = ax^2 + bx + c\] has roots $r_1$ and $r_2,$ can $a$, $r_1$, $b$, $r_2$ and $c$ be in arithmetic progression?

[The idea for this problem came from Janusz Kowalski of the Kreator Project.]