You may also like

problem icon

Building Tetrahedra

Can you make a tetrahedron whose faces all have the same perimeter?

problem icon

Rudolff's Problem

A group of 20 people pay a total of £20 to see an exhibition. The admission price is £3 for men, £2 for women and 50p for children. How many men, women and children are there in the group?

problem icon

Polycircles

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Overturning Fracsum

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Solve the following system of equations to find the values of $x$, $y$ and $z$. $${xy\over (x+y)}=1/2$$ $${yz\over (y+z)} =1/3$$ $${xz\over (x+z)} = 1/7$$