#### You may also like ### Absurdity Again

What is the value of the integers a and b where sqrt(8-4sqrt3) = sqrt a - sqrt b? ### Ball Bearings

If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n. ### Overarch 2

Bricks are 20cm long and 10cm high. How high could an arch be built without mortar on a flat horizontal surface, to overhang by 1 metre? How big an overhang is it possible to make like this?

# Generally Geometric

##### Age 16 to 18 Challenge Level:

The sum of the infinite geometric series $1 + x + x^2 + x^3 + \cdots$ and the binomial series are well known. How are the two related?

Show that $$\sum_{n=0}^\infty n x^n = {x\over(1-x)^2}$$ and find $$\sum_{n=0}^\infty n^2x^n.$$ Outline a method for finding $$\sum_{n=0}^\infty n^kx^n$$ where you do not have to carry out this computation beyond $k=2$.
Experiment with other expansions to try to find out the values for other interesting series.