Resources tagged with: Powers & roots

Filter by: Content type:
Age range:
Challenge level:

There are 32 results

Broad Topics > Properties of Numbers > Powers & roots

Unusual Long Division - Square Roots Before Calculators

Age 14 to 16
Challenge Level

However did we manage before calculators? Is there an efficient way to do a square root if you have to do the work yourself?

Negative Power

Age 14 to 16
Challenge Level

What does this number mean ? Which order of 1, 2, 3 and 4 makes the highest value ? Which makes the lowest ?

Lastly - Well

Age 11 to 14
Challenge Level

What are the last two digits of 2^(2^2003)?

Like Powers

Age 11 to 14
Challenge Level

Investigate $1^n + 19^n + 20^n + 51^n + 57^n + 80^n + 82^n $ and $2^n + 12^n + 31^n + 40^n + 69^n + 71^n + 85^n$ for different values of n.

Enriching Experience

Age 14 to 16
Challenge Level

Find the five distinct digits N, R, I, C and H in the following nomogram

Consecutive Squares

Age 14 to 16
Challenge Level

The squares of any 8 consecutive numbers can be arranged into two sets of four numbers with the same sum. True of false?

Rationals Between...

Age 14 to 16
Challenge Level

What fractions can you find between the square roots of 65 and 67?

Perfectly Square

Age 14 to 16
Challenge Level

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Cubes Within Cubes

Age 7 to 14
Challenge Level

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Power Mad!

Age 11 to 14
Challenge Level

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Largest Number

Age 11 to 14
Challenge Level

What is the largest number you can make using the three digits 2, 3 and 4 in any way you like, using any operations you like? You can only use each digit once.

Number Rules - OK

Age 14 to 16
Challenge Level

Can you produce convincing arguments that a selection of statements about numbers are true?

Archimedes and Numerical Roots

Age 14 to 16
Challenge Level

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

Roots Near 9

Age 14 to 16 Short
Challenge Level

For how many integers 𝑛 is the difference between √𝑛 and 9 is less than 1?

Double Trouble

Age 14 to 16
Challenge Level

Simple additions can lead to intriguing results...

Lost in Space

Age 14 to 16
Challenge Level

How many ways are there to count 1 - 2 - 3 in the array of triangular numbers? What happens with larger arrays? Can you predict for any size array?

Guesswork

Age 14 to 16
Challenge Level

Ask a friend to choose a number between 1 and 63. By identifying which of the six cards contains the number they are thinking of it is easy to tell them what the number is.

Rachel's Problem

Age 14 to 16
Challenge Level

Is it true that $99^n$ has 2n digits and $999^n$ has 3n digits? Investigate!

Pocket Money

Age 11 to 14
Challenge Level

Which of these pocket money systems would you rather have?

Sept 03

Age 11 to 14
Challenge Level

What is the last digit of the number 1 / 5^903 ?

The Root of the Problem

Age 14 to 18
Challenge Level

Find the sum of this series of surds.

Surds

Age 14 to 16
Challenge Level

Find the exact values of x, y and a satisfying the following system of equations: 1/(a+1) = a - 1 x + y = 2a x = ay

What an Odd Fact(or)

Age 11 to 14
Challenge Level

Can you show that 1^99 + 2^99 + 3^99 + 4^99 + 5^99 is divisible by 5?

More Magic Potting Sheds

Age 11 to 14
Challenge Level

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Equal Temperament

Age 14 to 16
Challenge Level

The scale on a piano does something clever : the ratio (interval) between any adjacent points on the scale is equal. If you play any note, twelve points higher will be exactly an octave on.

Two Many

Age 11 to 14
Challenge Level

What is the least square number which commences with six two's?

Root to Poly

Age 14 to 16
Challenge Level

Find the polynomial p(x) with integer coefficients such that one solution of the equation p(x)=0 is $1+\sqrt 2+\sqrt 3$.

Magic Potting Sheds

Age 11 to 14
Challenge Level

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Power Countdown

Age 14 to 16
Challenge Level

In this twist on the well-known Countdown numbers game, use your knowledge of Powers and Roots to make a target.

Fit for Photocopying

Age 14 to 16
Challenge Level

Explore the relationships between different paper sizes.

Deep Roots

Age 14 to 16
Challenge Level

Find integer solutions to: $\sqrt{a+b\sqrt{x}} + \sqrt{c+d.\sqrt{x}}=1$

Power Crazy

Age 11 to 14
Challenge Level

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?