Here is a version of the game 'Happy Families' for you to make and play.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

These practical challenges are all about making a 'tray' and covering it with paper.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Can you make the birds from the egg tangram?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

How many models can you find which obey these rules?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Kimie and Sebastian were making sticks from interlocking cubes and lining them up. Can they make their lines the same length? Can they make any other lines?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

A game to make and play based on the number line.

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Use the tangram pieces to make our pictures, or to design some of your own!

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

An activity making various patterns with 2 x 1 rectangular tiles.

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

What is the greatest number of squares you can make by overlapping three squares?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

If you have ten counters numbered 1 to 10, how many can you put into pairs that add to 10? Which ones do you have to leave out? Why?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Make a flower design using the same shape made out of different sizes of paper.

Can you deduce the pattern that has been used to lay out these bottle tops?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Is there a best way to stack cans? What do different supermarkets do? How high can you safely stack the cans?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?