NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.
Can you cut up a square in the way shown and make the pieces into a triangle?
Can you fit the tangram pieces into the outline of Granma T?
Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?
Find a way to cut a 4 by 4 square into only two pieces, then rejoin the two pieces to make an L shape 6 units high.
Can you fit the tangram pieces into the outline of Mai Ling?
How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!
Can you fit the tangram pieces into the outline of this plaque design?
Can you fit the tangram pieces into the outline of the telescope and microscope?
Can you fit the tangram pieces into the outline of the rocket?
Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.
Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.
Can you fit the tangram pieces into the outlines of the chairs?
Can you fit the tangram pieces into the outline of these rabbits?
Can you fit the tangram pieces into the outline of these convex shapes?
Can you fit the tangram pieces into the outline of this goat and giraffe?
Can you fit the tangram pieces into the outline of Little Ming?
Can you fit the tangram pieces into the outline of this sports car?
Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?
Can you fit the tangram pieces into the outlines of these people?
Can you fit the tangram pieces into the outline of Little Fung at the table?
Can you fit the tangram pieces into the outline of Little Ming playing the board game?
This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?
Can you fit the tangram pieces into the outline of this telephone?
Can you fit the tangram pieces into the outlines of these clocks?
Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?
Can you fit the tangram pieces into the outline of the child walking home from school?
Can you fit the tangram pieces into the outlines of the workmen?
Can you fit the tangram pieces into the outlines of the candle and sundial?
Can you fit the tangram pieces into the outlines of the watering can and man in a boat?
Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?
Can you fit the tangram pieces into the outline of this shape. How would you describe it?
Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?
Cut a square of paper into three pieces as shown. Now,can you use the 3 pieces to make a large triangle, a parallelogram and the square again?
Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?
These grids are filled according to some rules - can you complete them?
What happens to these capital letters when they are rotated through one half turn, or flipped sideways and from top to bottom?
Jenny Murray describes the mathematical processes behind making patchwork in this article for students.
This article looks at the importance in mathematics of representing places and spaces mathematics. Many famous mathematicians have spent time working on problems that involve moving and mapping. . . .
Have you ever noticed how mathematical ideas are often used in patterns that we see all around us? This article describes the life of Escher who was a passionate believer that maths and art can be. . . .