This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

These practical challenges are all about making a 'tray' and covering it with paper.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

An activity making various patterns with 2 x 1 rectangular tiles.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

How many models can you find which obey these rules?

If you have ten counters numbered 1 to 10, how many can you put into pairs that add to 10? Which ones do you have to leave out? Why?

If you count from 1 to 20 and clap more loudly on the numbers in the two times table, as well as saying those numbers loudly, which numbers will be loud?

Kimie and Sebastian were making sticks from interlocking cubes and lining them up. Can they make their lines the same length? Can they make any other lines?

You have been given three shapes made out of sponge: a sphere, a cylinder and a cone. Your challenge is to find out how to cut them to make different shapes for printing.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Make a flower design using the same shape made out of different sizes of paper.

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you visualise what shape this piece of paper will make when it is folded?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Exploring and predicting folding, cutting and punching holes and making spirals.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Make a cube out of straws and have a go at this practical challenge.

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Ahmed is making rods using different numbers of cubes. Which rod is twice the length of his first rod?

Here are some ideas to try in the classroom for using counters to investigate number patterns.

Can you each work out the number on your card? What do you notice? How could you sort the cards?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Reasoning about the number of matches needed to build squares that share their sides.

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?