Magic potting sheds
Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?
Problem
Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He would like to put the same number of plants in each of three gardens, planting one garden each day.
On the first day he puts some plants in the shed. Overnight, they double.
The next day he plants some in one of the gardens. The remaining plants double overnight.
The next day he plants some in a second garden, and again the remaining plants double overnight.
On the final day he plants all the remaining plants in the third garden.
Use the interactivity below to help you work out how many plants he should put in the potting shed on the first day, and how many he should plant in each garden.
Can you find more than one solution?
What do the solutions have in common?
Can you find the smallest number of plants he could use?
If you have enjoyed this problem, you might like to move on to More Magic Potting Sheds .
Getting Started
It may be useful to keep a record of your trials.
Try working backwards from the number of plants in the last
garden (remembering that you must always have whole numbers of
plants in the gardens and shed).
Can you have an odd number of plants in each garden? (Look at
the last garden.)
Describing the different stages algebraically may be
helpful.
Student Solutions
We received lots of good solutions to this problem - well done everyone! Many of you spotted that Mr McGregor should put $7$ plants in his potting shed at the beginning, and put $8$ plants in each garden. Well done to Henry from Finton House School, Ruth from Manchester High School for Girls, Liam from Wilbarston School, Mel from Christ Church Grammar School, Rachel from Beecroft Public School in Australia, Yanqing from Devenport High School for Girls and Daniel from Junction City High School for their detailed explanations of how they arrived at the answer.
Henry from Finton House School wrote:
"$1 \times2 \times2 \times2 = 8$.
8 therefore seems likely to be the number in the garden. Let's try it.
The number in the shed at the end must be the number in the garden.
Now what number do we double to get to $8$? It must be $4$.
$4 + 8 = 12$. $12$ divided by $2 = 6$.
$6 + 8 = 14$. $14$ divided by $2 = 7$."
Liam used similar logic:
"Just work backwards from the last garden. Imagine there to be $8$ plants in each garden. (You can't have odd numbers in a garden as the last garden must be double the whole number of plants left after the 2nd garden was planted. I chose $8$ because it's a conveniently sized power of 2.) There must have been $4$ plants left after the 2nd garden was planted so before it was planted there must have been $12$ which is double $6$. $6+8=14$. So Mr McGregor needs to put $14/2$ or $7$ plants in his magic potting shed at the beginning!"
Yanqing and Rachel used algebra. Here is Yanqing's solution:
"First, we make the number of plants put in the shed $n$, and the number planted each night $x$. So by the first morning, the number has doubled to $2n$ in the shed. We plant $x$ of them, leaving $2n-x$ in the shed overnight. By the second morning, we have $2(2n-x)=4n-2x$ in the shed. Planting $x$ of them, we are left with $4n-2x-x=4n-3x$ in the shed. By the third morning, there should be $2(4n-3x)=8n-6x$ plants in the shed. There need to be $x$ plants in the shed, as we need to plant all of them, so $8n-6x=x$ and $8n=7x$.
We can now say that the ratio of $n$ to $x$ is $7:8$, so the smallest values for $n$ and $x$, where they are both positive whole numbers, are obviously $7$ and $8$.
Other numbers which will work are all multiples of $7$."
Rachel also found that $8n= 7x$ and
concluded that:
"Now you can see that $8n$ or $7x$ could equal $56$, which
makes $n = 7$ and $x = 8$.
This works when you try it out, and if you multiply both numbers by another number, those new numbers work too."
Daniel concluded that:
"If you want to have the same amount of plants in each garden
you must start with a multiple of $7$ plants in the shed and each
day plant the same multiple of $8$ plants in the garden."
James from C.G.S.B found such a
solution:
"Start with $35$ ... then put $40$ in each garden"
And so did Mel from Christ Church Grammar
School!
"You start off with $301$ plants in the shed. You put $344$ in
each garden."
Teachers' Resources
For another problem that builds on the ideas in this problem,
students can be directed to
More Magic Potting Sheds
Full details of a tried and tested classroom approach to this
problem can be found in the
Notes to More Magic Potting Sheds
This activity offers students the opportunity to explore a new
environment and challenges them to use some deductive reasoning.
The problem can be tackled on paper but access to the interactivity
will speed up the process of exploring different
possibilities.
It is important to have paper available for students to record
the results of the different trials.