Rational Round
Show that there are infinitely many rational points on the unit
circle and no rational points on the circle x^2+y^2=3.
Problem
Show that for every integer $k$ the point $(x, y)$, where
$$x = {2k\over k^2 + 1}, \ y = {k^2 - 1\over k^2 + 1},$$
lies on the unit circle, $x^2 + y^2 =1$. That is, there are infinitely many rational points on this circle.
Show that there are no rational points on the circle $x^2 + y^2 =3$.
Getting Started
The first part is simply a matter of checking the algebra.
Modulus arithmetic is useful for the second part.
Modulus arithmetic is useful for the second part.
Student Solutions
The following solution came from Alan of Madras College, St Andrew's.
Substituting
$$ x = \frac{2k}{k^2 + 1}, y = \frac{k^2 - 1}{k^2 + 1}$$
we get
$$\eqalign{ x^2 + y^2 &= \left(\frac{2k}{k^2 + 1}\right)^2 + \left(\frac{k^2 - 1}{k^2 + 1}\right)^2 \\ \; &= \frac{(2k)^2 + (k^2 - 1)^2}{(k^2 + 1)^2} \\ \; &= \frac{4k^2 + k^4 - 2k^2 + 1}{(k^2 + 1)^2} \\ \; &= \frac{(k^2 + 1)^2}{(k^2 + 1)^2} \\ \; &= 1.}$$
So for every integer $k$ the point $(x,y)$ lies on the circle $x^2 + y^2 = 1$. (Note $(k^2 + 1) \neq 0$.)
Assume that it is possible for rational points to lie on the circle $x^2 +y^2 = 3$. For example $$\left(\frac{m}{n}\right)^2 + \left(\frac{k}{l}\right)^2 = 3$$ where $m$, $n$, $k$, $l$ are integers, $n$, $l \neq 0$, gcd $(m,n)$ = 1, gcd $(k,l)$ = 1. This can be rearranged to give $(ml)^2 + (kn)^2 = 3(nl)^2$ and hence
$$(ml)^2 + (kn)^2 \equiv 0 \qquad \qquad (\mbox{mod }3).$$
For any integer $q$ the only possibilities are
$$\eqalign{ q &\equiv 0 (\mbox{mod }3) \Rightarrow q^2 \equiv 0 (\mbox{mod }3) \\ q &\equiv 1 (\mbox{mod }3) \Rightarrow q^2 \equiv 1 (\mbox{mod }3) \\ q &\equiv 2 (\mbox{mod }3) \Rightarrow q^2 \equiv 4 \equiv 1 (\mbox{mod }3)}$$
So the only possible way for $(ml)^2 + (kn)^2 \equiv 0$ (mod 3) is for $(ml)^2 \equiv 0$ (mod 3) and $(kn)^2 \equiv 0$ (mod 3).
Case 1: suppose that $m \equiv 0$ (mod 3). Then $n$ not$\equiv 0$ (mod 3) because gcd $(m,n) = 1$, so that $k \equiv 0$ (mod 3). Then $l$ not $\equiv 0$ (mod 3) because gcd $(k,l)$ = 1. We write $m = 3m_1$ and $k = 3k_1$ where $m_1$ and $k_1$ are integers; then as $(ml)^2 + (kn)^2 = 3(nl)^2$ we have $$3(m_1^2l^2 +k_1^2n^2) = (nl)^2.$$ This shows that $nl \equiv 0$ (mod 3) which is a contradiction.
Case 2: suppose that $m$ not$\equiv 0$ (mod 3). Then $l \equiv 0$ (mod 3) and by the same reasoning as before we reach a contradiction.
Our assumption must be wrong, therefore no rational points lie on the circle $x^2 +y^2 = 3$.